
AIARD Conference, Hilton Garden Inn, Washington, D.C.
5th June, 2018.

J. Adewopo, I. Mohammed, A. Kamara, P. Craufurd, B. Vanlauwe | Associate Scientist
Frequency of consumption of Staple Food Crops at the National level.

<table>
<thead>
<tr>
<th>Staple Food Crops</th>
<th>Overall Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>20.1</td>
</tr>
<tr>
<td>Cassava</td>
<td>16.5</td>
</tr>
<tr>
<td>Rice</td>
<td>14.9</td>
</tr>
<tr>
<td>Cowpea grain</td>
<td>11.8</td>
</tr>
<tr>
<td>Groundnut</td>
<td>11.1</td>
</tr>
<tr>
<td>Yam</td>
<td>10.4</td>
</tr>
<tr>
<td>Sorghum</td>
<td>6.6</td>
</tr>
<tr>
<td>Plantain</td>
<td>5.9</td>
</tr>
<tr>
<td>Soybean</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Source: IITA Nigeria Food Consumption and Nutrition Survey, 2003
Old Problem – The Challenge

US Maize Yield vs. Sub-Saharan African Maize Yields

- **United States**: USDA NASS (2016) 10.3 t/ha
- **Côte d’Ivoire**: USDA PS&D (2016) 0.71 t/ha
- **Ethiopia**: USDA PS&D (2016) 0.96 t/ha
- **Kenya**: USDA PS&D (2016) 1.09 t/ha
- **Nigeria**: USDA PS&D (2016) 0.91 t/ha
- **South Africa**: USDA PS&D (2016) 4.06 t/ha
- **Tanzania**: USDA PS&D (2016) 1.38 t/ha
- **Uganda**: USDA PS&D (2016) 3.43 t/ha

Data: USDA PS&D, USDA NASS, Gro Intelligence

A member of CGIAR consortium
What does Agronomy at Scale Involve?

“agronomy” = “the science of soil management and crop production”

“at scale” = “at the required spatial extent and granularity to solve the problem”

What would this transformed landscape look like?

- Weak/No integration of spatial data
- Limited reach & Monitoring systems (adoption/yields)
- Limited Tech Availability

Developing solutions that contribute to the shift

- Extensive integration of spatial data
- Reaching millions & efficient monitoring systems (adoption, yields)
- Developing, Adapting, and Deploying Techs

How to move towards this vision
How far to move?
Who to engage?
Old Problem – The Challenge

1. No georeferencing of reported yield locations
2. Full reliance on unvalidated/unverified farmer reported yield data
3. Unknown/inaccurate area of farmlands surveyed

Collaborative Workshop on Crop Yield Estimation in Nigeria: Advancing Methods through Partnership

NAERLS- TAMASA -BUK-NASRDA

Date: Thursday 19th April 2018
Venue: Training Hall, NAERLS-ABU, Zaria
Advancing Maize-based Systems

Old Problem – The Challenge
Old Problem – The Intervention

- Develop and promote innovative tools/methods for assessing and optimizing yield in smallholder maize-based systems.

Target Countries for Maize-based system Agronomy Intervention

BMGF ($12 Million)

Taking Maize Agronomy to Scale in Africa (TAMASA)

www.tamasa.cimmyt.org
Old Problem – The Goal

Potential Yield

- Develop and promote innovative tools/methods for optimizing and assessing yield in smallholder maize-based systems.

Yield Gap (>50%*)

- Non- (or minimally -) invasive

Realized Yield

- Scalable (Space & Time)

- Spatially explicit
#1. Can farmers’ reported yield be trusted for national yield estimation?

![Image of farmers in a field]

New Possibilities – Smartphones

Farmers’ Managed Field - FMF

[Diagram showing the integration of smartphones and farmers managed fields]

A member of CGIAR consortium

www.iita.org
#1. Can farmers’ reported yield be trusted for national yield estimation?

Grain Yield (t.ha⁻¹)

- **BK** – Bunkure
- **DG** – Doguwa
- **FT** – Funtua
- **IK** – Ikara
- **SB** – Soba

Box Plots

- **Farmer Reported**
- **Field Estimated**

Scatter Plot

- **R² = 0.1 (weak)**

New Possibilities – Smartphones

- **New Possibilities**
 - Smartphones
#2. How can we rapidly and accurately assess smallholder farm area?

Drone: Sensefly eBee-1 UAV (Fixed Wing)
Sensor: Multi-spectral 4C Camera Sensor + RGB
Mission Planning: e-Motion and ArcGIS
#2. How can we rapidly and accurately assess smallholder farm area?

Summary Statistics (ha)

- **Mean**: 0.329744
- **Median**: 0.239938
- **Mode**: 0.279963
- **Range**: 1.860254
- **Minimum**: 0.042927
- **Maximum**: 1.903182

Freq

- Farm Area (ha)
 - 0: 60
 - 0.5: 40
 - 1: 20
 - 1.5: 2
 - 2: 0

Bunkure, Kano
#3. Can yield-targeting technologies be reliably tested at fewer locations?
#3. Can yield-targeting technologies be reliably tested at fewer locations?

- **Stepwise stratified spatial sampling**

 - Determine relevant variables
 - Assess gridded data on variables and subset by AOI mask
 - Generate random k-points as clusters within j-quadrats (10 x 10 km)
 - Reclassify into strata (m-classes)
 - New layer from non-weighted compositing of variables
 - Conduct stratified-random sampling of n-points from k-points and based on m-classes
 - Calculate sample size per strata (n-points) based on relative proportion of each m-class
 - Final selected point locations for trials

 $n = 3000$ (1321 Consented)

 $n = 449$

 $n = 30$
#3. Can yield-targeting technologies be reliably tested at fewer locations?
#3. Can yield-targeting technologies be reliably tested at fewer locations?

- Optimizing sample size for nutrient response trials

- Similar understanding of nutrient response with fewer sampling locations!
#4. Can we assess yield variability with remotely-sensed agronomic variables?

- **Trimble GreenSeeker (NDVI)**

\[
\text{NDVI} = \frac{\rho_{NIR} - \rho_{Red}}{\rho_{NIR} + \rho_{Red}}
\]
• Rapid assessment of yield variability

- UAV-derived in NOT plots
- Greenseeker-measured in NOT plots

- UAV-borne and Proximal Sensors can be used to estimate yield estimation in controlled conditions
Conclusion – Framework

Designated Sentinel Sites
- Multicriteria selection
- Stakeholders co-managed
- [Bi-] Annual Crop Cuts
- ICT Tools and Techs (Pilot, Deploy)

Integrate Data from Existing Regional or Country-wide Projects
- Curate and Adapt SOPs
- Synthesize Data
- Adopt proven techs

Ground-operations Domain

Database/Repository

Remote Sensing Analytics
- Imagery Analytics
- Cropland Mapping Analytics
- Yield Prediction Analytics
- Uncertainty Assessment

Governments /Institutions

Research

Markets
Thank you.

Julius B. Adewopo | j.adewopo@cgiar.org

TAMASA
Taking Maize Agronomy to Scale in Africa